Moderate Deviation Principles for Trajectories of Sums of Independent Banach Space Valued Random Variables
نویسندگان
چکیده
Let {Xn} be a sequence of i.i.d. random vectors with values in a separable Banach space. Moderate deviation principles for trajectories of sums of {Xn} are proved, which generalize related results of Borovkov and Mogulskii (1980) and Deshayes and Picard (1979). As an application, functional laws of the iterated logarithm are given. The paper also contains concluding remarks, with examples, on extending results for partial sums to corresponding ones for trajectory setting.
منابع مشابه
A Comparison Inequality for Sums of Independent Random Variables∗
We give a comparison inequality that allows one to estimate the tail probabilities of sums of independent Banach space valued random variables in terms of those of independent identically distributed random variables. More precisely, let X1, . . . , Xn be independent Banach-valued random variables. Let I be a random variable independent of X1, . . . , Xn and uniformly distributed over {1, . . ....
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملComparison of Sums of Independent Identically Distributed Random Variables
Let Sk be the k-th partial sum of Banach space valued independent identically distributed random variables. In this paper, we compare the tail distribution of ‖Sk‖ with that of ‖Sj‖, and deduce some tail distribution maximal inequalities. The main result of this paper was inspired by the inequality from [dP–M] that says that Pr(‖X1‖ > t) ≤ 5 Pr(‖X1 +X2‖ > t/2) whenever X1 and X2 are independent...
متن کاملMaximal inequalities for centered norms of sums of independent random vectors
Let X1, X2, . . . , Xn be independent random variables and Sk = Pk i=1 Xi. We show that for any constants ak, P( max 1≤k≤n ||Sk| − ak| > 11t) ≤ 30 max 1≤k≤n P(||Sk| − ak| > t). We also discuss similar inequalities for sums of Hilbert and Banach space valued random vectors.
متن کاملSelf-normalized Moderate Deviations and Lils
Let fXn;n 1g be i.i.d. R d-valued random variables. We prove Partial Moderate Deviation Principles for self-normalized partial sums subject to minimal moment assumptions. Applications to the self-normalized law of the iterated logarithm are also discussed.
متن کامل